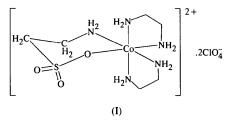
- Siemens (1996). XP in SHELXTL. Molecular Graphics Program. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Ueki, T., Ashida, T., Sasada, Y. & Kakudo, M. (1967). Acta Cryst. 22, 870–878.
- Ueki, T., Ashida, T., Sasada, Y. & Kakudo, M. (1969). Acta Cryst. B25, 328-336.
- Warda, S. A. (1994). In Bioanorganische Kupfer(II) Komplexe mit dreizähnigen O,N,O Chelat-Dianionen und additiven einzähnigen Donorliganden. Aachen: Verlag Shaker.
- Warda, S. A. (1997). Acta Cryst. C53, 697-699.
- Warda, S. A., Friebel, C., Sivy, J., Plesch, G. & Bláhová, M. (1997). Acta Cryst. C53, 50–54.
- Warda, S. A., Friebel, C., Sivy, J., Plesch, G. & Švajlenová, M. (1996). Acta Cryst. C52, 2763–2766.

Acta Cryst. (1997). C53, 1761-1762

# A Stable Sulfonato–Cobalt(III) Complex: $\Delta$ -[Co{OS(O)<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>-N,O}(en)<sub>2</sub>]-(ClO<sub>4</sub>)<sub>2</sub>

Mayumi Murata,<sup>a</sup> Masaaki Kojima,<sup>a</sup> Masakazu Kita,<sup>b</sup> Setsuo Kashino<sup>a</sup> and Yuzo Yoshikawa<sup>a</sup>

<sup>a</sup>Department of Chemistry, Faculty of Science, Okayama University, Tsushima, Okayama 700, Japan, and <sup>b</sup>Department of Chemistry, Naruto University of Education, Takashima, Naruto 772, Japan. E-mail: mayumi@cc.okayama-u.ac.jp


(Received 17 April 1997; accepted 8 July 1997)

# Abstract

A stable sulfonato complex, (2-aminoethanesulfonato-N,O)bis(ethylenediamine-N,N')cobalt(III) perchlorate, [Co(C<sub>2</sub>H<sub>6</sub>NO<sub>3</sub>S)(C<sub>2</sub>H<sub>8</sub>N<sub>2</sub>)<sub>2</sub>](ClO<sub>4</sub>)<sub>2</sub>, was prepared by oxidation of [Co{OS(O)CH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>-N,O}(en)<sub>2</sub>]<sup>2+</sup> (en = NH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>) in acid media. This sulfonato complex was resolved by SP-Sephadex column chromatography and the absolute configuration of the slower eluted (-)<sub>589</sub>-isomer was determined by X-ray analysis to be  $\Delta$ .

## Comment

Generally, monodentate sulfonato–cobalt(III) complexes are aquated easily and the coordinating ability of a monodentate sulfonate ligand is usually weak. For example, the half-life of aquation of  $[Co{OS(O)_2CH_3}-(NH_3)_5]^{2+}$  is *ca* 58 min at 298 K (Jackson, Jurisson & O'Leary, 1993). In the present work, we considered that a cobalt(III) complex involving the 2-aminoethanesulfonate *N*,*O*-chelate may be stable enough to be isolated. Accordingly, we actually prepared the first stable sulfonato–cobalt(III) complex (Murata *et al.*, 1996). This sulfonato complex was resolved by SP-Sephadex column chromatography, and the slower eluted complex,  $(-)_{589}$ -[Co{OS(O)<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>-N,O}(en)<sub>2</sub>]<sup>2+</sup>, was assigned the  $\Delta$  configuration on the basis of the circular dichroism (CD) sign at *ca* 535 nm in the first spinallowed *d*-*d* band region. We carried out the X-ray analysis of the title complex, (I), in order to confirm this assignment.



A perspective view of the complex cation obtained from the eluate containing the slower eluted isomer,  $(-)_{589}$ - $\Delta$ -[Co{OS(O)<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>-N, O}(en)<sub>2</sub>]<sup>2+</sup>, is shown in Fig. 1. The coordination geometry around the Co atom is approximately octahedral. The sulfonate ligand coordinates to the Co atom with *N*,*O*-chelation. The S-O1 [1.482 (2) Å] bond length is longer than both S-O2 [1.446 (2) Å] and S-O3 [1.439 (2) Å]. The sulfonate O atom in the complex does not induce a significant *trans* influence. To our knowledge, this is the first example of a stable sulfonato-cobalt(III) complex.

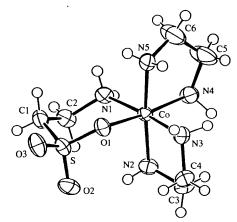



Fig. 1. An ORTEPII (Johnson, 1976) drawing for the complex cation,  $(-)_{589}-\Delta$ -[Co{OS(O)<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>}(en)<sub>2</sub>]<sup>2+</sup>, with displacement ellipsoids at the 50% probability level. H atoms are represented by circles (representing  $B = 1.0 \text{ Å}^2$ ).

### Experimental

[Caution: perchlorate salts of metal complexes can be explosive and should be handled with care.] A mixture of 30% H<sub>2</sub>O<sub>2</sub> (10 g, 88 mmol) and 60% HClO<sub>4</sub> (10 g) was added dropwise to a dimethyl sulfoxide solution (15 ml) of [Co{OS(O)CH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>-N,O}(en)<sub>2</sub>](ClO<sub>4</sub>)<sub>2</sub> (1 g, 2 mmol) (Mäcke, Houlding & Adamson, 1980) with stirring and at a

temperature below 278 K. The color of the solution changed from red to orange-red during the addition. The mixture was stirred for 30 min and left overnight in a refrigerator. The solution was diluted with water (1000 ml), poured onto a column ( $\varphi$  3 × 5 cm) of SP-Sephadex C-25, and the adsorbed complex was eluted with 0.3 M NaClO<sub>4</sub>. The column showed a single orange-red band. The eluate containing the orangered band was collected and evaporated to ca 5 ml under reduced pressure to yield an orange-red precipitate which was recrystallized from water. Analysis found: C 14.03, H 4.86, N 13.59, S 6.14%. Calculated for C<sub>6</sub>H<sub>24</sub>CoCl<sub>2</sub>N<sub>5</sub>O<sub>12</sub>S  $\{[Co{OS(O)_2CH_2CH_2NH_2}(en)_2](ClO_4)_2,H_2O\}: C 13.85, H$ 4.65, N 13.46, S 6.16%. This complex (0.1 g, 0.2 mmol) was charged on top of an SP-Sephadex C-25 column ( $\varphi$  3  $\times$ 90 cm). Upon elution with 0.1 M Na<sub>2</sub>[Sb<sub>2</sub>{(+)-tartrate}<sub>2</sub>], two bands were developed. Each of the fractions was diluted with water, poured again onto a small column ( $\varphi$  3  $\times$  7 cm) of SP-Sephadex C-25, and the adsorbed complex was eluted with 0.3 M NaClO<sub>4</sub>. The eluate was concentrated to dryness in a desiccator over P<sub>4</sub>O<sub>10</sub>. Single crystals were obtained by recrystallization from water by adding ethanol, and a crystal from the slower eluted isomer was used for X-ray structure determination. Analysis found for the faster eluted isomer: C 14.61, H 4.55, N 13.43, S 5.78%. Analysis found for the slower eluted isomer: C 14.31, H 4.62, N 13.19, S 6.99%. Calculated for  $C_6H_{24}CoCl_2N_5O_{11}S \{ [Co\{OS(O)_2CH_2CH_2NH_2 \} -$ (en)<sub>2</sub>](ClO<sub>4</sub>)<sub>2</sub>}: C 14.35, H 4.42, N 13.94, S 6.39%.

| $[Co(C_2H_6NO_3S)(C_2H_8N_2)_2]$ - | Mo $K\alpha$ radiation        |
|------------------------------------|-------------------------------|
| $(ClO_4)_2$                        | $\lambda = 0.71073 \text{ Å}$ |
| $M_r = 502.17$                     | Cell parameters from 25       |
| Monoclinic                         | reflections                   |
| P21                                | $\theta = 10 - 11^{\circ}$    |
| a = 9.075(1) Å                     | $\mu = 1.441 \text{ mm}^{-1}$ |
| b = 11.282(2)Å                     | T = 295  K                    |
| c = 9.191(1) Å                     | Plate                         |
| $\beta = 108.37 (1)^{\circ}$       | $0.50\times0.50\times0.05$ mm |
| V = 893.1 (2) Å <sup>3</sup>       | Orange-red                    |
| Z = 2                              | -                             |
| $D_x = 1.867 \text{ Mg m}^{-3}$    |                               |
| $D_m$ not measured                 |                               |

Data collection

| Rigaku AFC-5R diffractom-                    | 3740 reflections with             |
|----------------------------------------------|-----------------------------------|
| eter                                         | $I > 3\sigma(I)$                  |
| $\omega/2\theta$ scans                       | $R_{\rm int} = 0.015$             |
| Absorption correction:                       | $\theta_{\rm max} = 27.5^{\circ}$ |
| $\psi$ scan (TEXSAN;                         | $h = -11 \rightarrow 11$          |
| Molecular Structure                          | $k = -14 \rightarrow 14$          |
| Corporation, 1985)                           | $l = 0 \rightarrow 11$            |
| $T_{\rm min} = 0.549, \ T_{\rm max} = 0.930$ | 3 standard reflections            |
| 4343 measured reflections                    | every 97 reflections              |
| 4098 independent reflections                 | intensity decay: none             |
|                                              |                                   |

#### Refinement

R = 0.029

S = 1.51

wR = 0.028

Refinement on F  $(\Delta/\sigma)_{\rm max} = 0.10$  $\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^{-3}$  $\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: none 3740 reflections Scattering factors from International Tables for X-ray 306 parameters Crystallography (Vol. IV) H atoms: see below  $w = 1/\sigma^2(F)$ 

|          |          |           |            |      | ~ . |
|----------|----------|-----------|------------|------|-----|
| Table 1  | Soloctod | apomptric | parameters | (A   | 0   |
| Table I. | Jerecreu | geometric | purumeters | (11, |     |

| Co-O1                                                 | 1.944 (2)                                                    | SO1                                       | 1.482 (2)                                        |
|-------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|--------------------------------------------------|
| Co-N1                                                 | 1.978 (3)                                                    | SO2                                       | 1.446 (2)                                        |
| Co-N2                                                 | 1.965 (2)                                                    | SO3                                       | 1.439 (2)                                        |
| Co-N3                                                 | 1.952 (3)                                                    | SC1                                       | 1.766 (4)                                        |
| Co-N4                                                 | 1.952 (3)                                                    | N1C2                                      | 1.492 (4)                                        |
| Co-N5                                                 | 1.943 (2)                                                    | C1C2                                      | 1.491 (5)                                        |
| 01-Co-N1<br>Co-01-S<br>Co-N1-C2<br>01-S-02<br>01-S-03 | 91.1 (1)<br>128.5 (1)<br>118.7 (2)<br>110.7 (1)<br>110.6 (1) | O2—S—O3<br>O1—S—C1<br>S—C1—C2<br>N1—C2—C1 | 114.1 (2)<br>104.6 (2)<br>111.6 (3)<br>112.5 (3) |

The absolute configuration was determined using the anomalous dispersion effect. When the  $\Lambda$  configuration was assumed, the refinement resulted in R = 0.045 and wR = 0.048, which were significantly larger than the values of R = 0.029 and wR = 0.028 for the  $\Delta$  configuration. Furthermore, the inequality relationship was checked for 21 pairs of reflections with  $\{|F_o(hkl)| - |F_o(h\bar{k}l)|\}$  larger than  $10\sigma(F_o)$ . The relationship was held without exception for the  $\Delta$  configuration. Methylenic H atoms of one of the ethylenediamine groups (H91, H92, H101 and H102) were fixed at ideal positions, each with an isotropic displacement parameter of 1.2 times that of the parent C atom. All other H-atom parameters were refined.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1990). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1985). Program(s) used to solve structure: MITHRIL (Gilmore, 1984). Program(s) used to refine structure: TEXSAN. Molecular graphics: OR-TEPII (Johnson, 1976). Software used to prepare material for publication: TEXSAN.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OA1028). Services for accessing these data are described at the back of the journal.

#### References

- Gilmore, C. J. (1984). MITHRIL. Computer Program for the Automatic Solution of Crystal Structures from X-ray Data. Department of Chemistry, University of Glasgow, Scotland.
- Jackson, W. G., Jurisson, S. S. & O'Leary, M. A. (1993). Inorg. Chem. 32, 445-449.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Mäcke, H., Houlding, V. H. & Adamson, A. W. (1980). J. Am. Chem. Soc. 102, 6888-6889.
- Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1990). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Murata, M., Kojima, M., Kita, M., Kashino, S. & Yoshikawa, Y. (1996). Chem. Lett. pp. 675-676.